trešdiena, 2025. gada 8. janvāris

Photorealistic filter for video game footage

Here is a step-by-step guide for creating a photorealistic filter for video game footage using the workflow and free tools mentioned:


Step 1: Extract Video Frames

First, convert the video game footage into individual image frames.

  1. Install FFmpeg:

    • Download FFmpeg from FFmpeg Official Website.
    • Add FFmpeg to your system’s PATH for easy access via the terminal/command prompt.
  2. Extract Frames:

    • Open a terminal and navigate to the folder containing your video (input.mp4).
    • Run the following command:
      ffmpeg -i input.mp4 -vf fps=30 frames/frame_%04d.png
      
      • input.mp4: Replace this with your video file name.
      • fps=30: Set the output frame rate (30 frames per second).
      • frames/frame_%04d.png: Saves frames in the frames/ folder as frame_0001.png, frame_0002.png, etc.
  3. Verify Output:

    • Check the frames/ folder to ensure the extracted frames are saved as images.

Step 2: Process Frames

Option A: Apply Style Transfer with CycleGAN

  1. Download CycleGAN:

    • Clone the repository:
      git clone https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix.git
      cd pytorch-CycleGAN-and-pix2pix
      
  2. Install Dependencies:

    • Install required Python libraries:
      pip install -r requirements.txt
      
  3. Download Pretrained Models:

    • Download a pretrained model (e.g., horse2zebra for stylistic changes or fine-tune for photorealism):
      bash ./scripts/download_cyclegan_model.sh horse2zebra
      
  4. Apply Style Transfer:

    • Use the test.py script to process frames:
      python test.py --dataroot ./frames --name horse2zebra_pretrained --model test --no_dropout
      
      • Replace horse2zebra with your pretrained model.
      • Processed frames will be saved in the results/ folder.

Option B: Apply Super-Resolution with ESRGAN

  1. Download ESRGAN:

    • Clone the repository:
      git clone https://github.com/xinntao/ESRGAN.git
      cd ESRGAN
      
  2. Install Dependencies:

    • Install required Python libraries:
      pip install -r requirements.txt
      
  3. Download Pretrained Models:

    • Download the ESRGAN model from here.
  4. Run Super-Resolution:

    • Process frames using the ESRGAN script:
      python test.py --input_folder ./frames --output_folder ./processed_frames
      
      • Input: ./frames/
      • Output: ./processed_frames/

Option C: Generate Depth Maps with MiDaS

  1. Download MiDaS:

    • Clone the MiDaS repository:
      git clone https://github.com/isl-org/MiDaS.git
      cd MiDaS
      
  2. Install Dependencies:

    • Install PyTorch and MiDaS dependencies:
      pip install torch torchvision
      pip install -r requirements.txt
      
  3. Run Depth Estimation:

    • Generate depth maps for each frame:
      python run.py --input_path ./frames --output_path ./depth_maps
      
      • Input: ./frames/
      • Output: ./depth_maps/

Step 3: Reassemble Processed Frames into a Video

  1. Ensure Processed Frames are Ordered:

    • Processed frames should be named sequentially (frame_0001.png, frame_0002.png, etc.).
  2. Merge Frames into Video:

    • Run the following FFmpeg command:
      ffmpeg -framerate 30 -i processed_frames/frame_%04d.png -c:v libx264 -pix_fmt yuv420p output.mp4
      
      • -framerate 30: Match the original frame rate (30 FPS).
      • processed_frames/frame_%04d.png: Processed frames directory.
      • output.mp4: Final video file.
  3. Verify Output:

    • Check the output.mp4 file to ensure it combines the processed frames into a smooth video.

Optimizing for GTX 1650 Ti

  • Resolution: Limit frame resolution to 720p (1280x720) to avoid GPU memory issues.
  • Batch Processing: Process frames in batches to reduce VRAM usage.
    • Modify scripts to load and process fewer images at a time.
  • Mixed Precision: Use PyTorch's torch.cuda.amp for mixed-precision training or inference to save VRAM.

Potential Enhancements

  1. Dataset Fine-Tuning:

    • Train CycleGAN or ESRGAN on a custom dataset with real-world images for better photorealism.
    • Use datasets like COCO or Flickr for training.
  2. Post-Processing:

    • Add cinematic effects using DaVinci Resolve (free) for professional video editing.

Let me know if you’d like help setting up any of these tools or troubleshooting specific issues!

Nav komentāru:

Ierakstīt komentāru