Here is a step-by-step guide for creating a photorealistic filter for video game footage using the workflow and free tools mentioned:
Step 1: Extract Video Frames
First, convert the video game footage into individual image frames.
-
Install FFmpeg:
- Download FFmpeg from FFmpeg Official Website.
- Add FFmpeg to your system’s PATH for easy access via the terminal/command prompt.
-
Extract Frames:
- Open a terminal and navigate to the folder containing your video (
input.mp4
). - Run the following command:
ffmpeg -i input.mp4 -vf fps=30 frames/frame_%04d.png
input.mp4
: Replace this with your video file name.fps=30
: Set the output frame rate (30 frames per second).frames/frame_%04d.png
: Saves frames in theframes/
folder asframe_0001.png
,frame_0002.png
, etc.
- Open a terminal and navigate to the folder containing your video (
-
Verify Output:
- Check the
frames/
folder to ensure the extracted frames are saved as images.
- Check the
Step 2: Process Frames
Option A: Apply Style Transfer with CycleGAN
-
Download CycleGAN:
- Clone the repository:
git clone https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix.git cd pytorch-CycleGAN-and-pix2pix
- Clone the repository:
-
Install Dependencies:
- Install required Python libraries:
pip install -r requirements.txt
- Install required Python libraries:
-
Download Pretrained Models:
- Download a pretrained model (e.g.,
horse2zebra
for stylistic changes or fine-tune for photorealism):bash ./scripts/download_cyclegan_model.sh horse2zebra
- Download a pretrained model (e.g.,
-
Apply Style Transfer:
- Use the
test.py
script to process frames:python test.py --dataroot ./frames --name horse2zebra_pretrained --model test --no_dropout
- Replace
horse2zebra
with your pretrained model. - Processed frames will be saved in the
results/
folder.
- Replace
- Use the
Option B: Apply Super-Resolution with ESRGAN
-
Download ESRGAN:
- Clone the repository:
git clone https://github.com/xinntao/ESRGAN.git cd ESRGAN
- Clone the repository:
-
Install Dependencies:
- Install required Python libraries:
pip install -r requirements.txt
- Install required Python libraries:
-
Download Pretrained Models:
- Download the ESRGAN model from here.
-
Run Super-Resolution:
- Process frames using the ESRGAN script:
python test.py --input_folder ./frames --output_folder ./processed_frames
- Input:
./frames/
- Output:
./processed_frames/
- Input:
- Process frames using the ESRGAN script:
Option C: Generate Depth Maps with MiDaS
-
Download MiDaS:
- Clone the MiDaS repository:
git clone https://github.com/isl-org/MiDaS.git cd MiDaS
- Clone the MiDaS repository:
-
Install Dependencies:
- Install PyTorch and MiDaS dependencies:
pip install torch torchvision pip install -r requirements.txt
- Install PyTorch and MiDaS dependencies:
-
Run Depth Estimation:
- Generate depth maps for each frame:
python run.py --input_path ./frames --output_path ./depth_maps
- Input:
./frames/
- Output:
./depth_maps/
- Input:
- Generate depth maps for each frame:
Step 3: Reassemble Processed Frames into a Video
-
Ensure Processed Frames are Ordered:
- Processed frames should be named sequentially (
frame_0001.png
,frame_0002.png
, etc.).
- Processed frames should be named sequentially (
-
Merge Frames into Video:
- Run the following FFmpeg command:
ffmpeg -framerate 30 -i processed_frames/frame_%04d.png -c:v libx264 -pix_fmt yuv420p output.mp4
-framerate 30
: Match the original frame rate (30 FPS).processed_frames/frame_%04d.png
: Processed frames directory.output.mp4
: Final video file.
- Run the following FFmpeg command:
-
Verify Output:
- Check the
output.mp4
file to ensure it combines the processed frames into a smooth video.
- Check the
Optimizing for GTX 1650 Ti
- Resolution: Limit frame resolution to 720p (1280x720) to avoid GPU memory issues.
- Batch Processing: Process frames in batches to reduce VRAM usage.
- Modify scripts to load and process fewer images at a time.
- Mixed Precision: Use PyTorch's
torch.cuda.amp
for mixed-precision training or inference to save VRAM.
Potential Enhancements
-
Dataset Fine-Tuning:
- Train CycleGAN or ESRGAN on a custom dataset with real-world images for better photorealism.
- Use datasets like COCO or Flickr for training.
-
Post-Processing:
- Add cinematic effects using DaVinci Resolve (free) for professional video editing.
Let me know if you’d like help setting up any of these tools or troubleshooting specific issues!
Nav komentāru:
Ierakstīt komentāru